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Abstract

We show that given a reflecting cardinal, one can produce a model
of BPFA where the Σ1

n-uniformization property holds simultaneously
for all n ≥ 2.

1 Introduction

Given A ⊂ ωω × ωω, we say that f is a uniformization (or a uniformizing
function) of A if there is a function f such that

dom(f) = pr1(A) = {x ∈ 2ω : ∃y((x, y) ∈ A}

and the graph of f is a subset of A.

Definition 1.1 (Uniformization Property). We say that the projective point-
class Γ ∈ {Σ1

n | n ∈ ω} ∪ {Π1
n | n ∈ ω} has the uniformization property iff

every Γ-set in the plane admits a uniformization whose graph is in Γ, i.e.
the relation (x, y) ∈ f is in Γ.

It is a classical result due to M. Kondo that lightface Π1
1-sets do have

the uniformization property, this also yields the uniformization property for
Σ1

2-sets. This is all ZFC can prove about the uniformization property of
projective sets. In the constructible universe L, for every n ≥ 3, Σ1

n does
have the uniformization property which follows from the existence of a good
wellorder by an old result of Addison (see [1]). Recall that a ∆1

n-definable
wellorder < of the reals is a good ∆1

n-wellorder if < is of ordertype ω1 and
the relation <I⊂ (ωω)2 defined via

x <I y ⇔ {(x)n : n ∈ ω} = {z : z < y}
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where (x)n is some fixed recursive partition of x into ω-many reals, is a ∆1
n-

definable. It is easy to check that the canonical wellorder of the reals in L
is a good ∆1

2-wellorder so the Σ1
n-uniformization property follows for n ≥ 2.

The very same argument also shows that inner models of the form L[U ] for
U a normal, κ-complete ultrafilter on κ share the same L-like pattern for
uniformization.

On the other hand, large cardinal assumptions draw a very different pic-
ture. Due to the celebrated result of Moschovakis (see [14] 39.9), PD implies
that Π1

2n+1 and Σ1
2n+2-sets have the uniformization property for n > 1. By

the famous Martin-Steel result (see [15], Theorem 13.6.), the assumption of
infinitely many Woodin cardinals outright implies PD, and hence large car-
dinals fully settle the behaviour of the uniformization property within the
projective hierarchy.

The connection of PD with forcing axioms is established via core model
induction. Under the assumption of the proper forcing axiom, Schimmerling,
Steelt and Woodin showed that PD is true (in fact much more is true, see
[17]), thus also under PFA the Π1

2n+1-uniformization holds for n > 1. As
the uniformization property for one pointclass rules out the uniformization
property of the dual pointclass, the behaviour of sets of reals in L and under
PFA contradict each other.

It is natural to investigate uniformization in the presence of weaker
forcing axioms, the bounded proper forcing axiom BPFA (introduced by
Goldstern-Shelah, see [6]) being the paradigmatic example together with
Martin’s Axiom. A first step was taken in [10], where it is shown that BPFA
and “ω1 is not inaccessible to reals” outright imply that the boldface Σ1

3-
uniformization property holds. However Addisons result from 1959 has been
the only tool to obtain the L-like global uniformization pattern. As a con-
sequence the known universes which satisfy the Σ1

n uniformization property
for all n > 1 are quite special, in particular they must satisfy CH, hence
BPFA fails in such universes.

The main goal of this paper is to produce a new method which will
force the L-like uniformization pattern. We will introduce a family of Σ1

n-
predicates whose truth value can be switched from false to true using care-
fully designed forcings which are ω1-preserving but not proper. These pred-
icates in turn will be used to define an iterated forcing construction yielding
a universe in which the Σ1

n-uniformization property holds for each n ≥ 2
simultaneously. The definitions of the uniformizing functions are robust un-
der additional usage of proper forcings, which opens the possibility of forcing
BPFA simultaneously.

Theorem 1.2. Working in L, assuming the existence of a reflecting cardinal,
there is a generic extension of L in which BPFA and the Σ1

n-uniformization
property for every n ≥ 2 are true.

The forcing method which yields the Σ1
n-uniformization property seems
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to be quite flexible and we expect several further applications.
We end the introduction with a short description of how the article is

organized. Section 1 introduces the forcings we will use. This builds on
a technique first introduced in [12] which in turn relies on the notion of
mutual stationarity by Foreman-Magidor and Todorcevic’s argument that
PFA implies the failure of square. Section 1.3 sets up a coding machinery
which can be combined with the arguments for obtaining BPFA without
dangerous interferences. Section 2 introduces a family of Σ1

n-formulas which
we will use for the uniformization property. Section 3 explains the coding
method which produces universes with the L-like uniformization property,
and section 4 combines this method with the argument to obtain BPFA to
finally prove the main theorem of this work.

It belongs to a series of articles which devote themselves to the study of
the separation, the reduction and the uniformization property (see [8],[9], [10]
and [11]). We emphasize however that our arguments in this work (which
deal with the Σ-side of uniformization) must differ substantially from the
arguments which deal with the Π-side, (as [8],[9] and [11]) as the two pictures
necessarily can not be combined within ZFC.

1.1 Mutually stationary sets

An algebra A on a cardinal λ is a structure of the form (λ, fi)i∈ω, where
for each i ∈ ω, fi : [λ]<ω → λ. Typically, the fi’s will be definable Skolem
functions over structures of the form (H(θ),∈, <) where < is a well-order of
H(θ) and θ is some regular cardinal. The following notion was introduced
by M. Foreman and M. Magidor in their seminal [5].

Definition 1.3. Let K be a collection of regular cardinals whose supremum
is strictly below κ, and suppose that Sη ⊆ η for each η ∈ K. Then the
collection of sets {Sη | η ∈ K} is mutually stationary if and only if for all
algebras A on κ, there is an N ≺ A such that

for all η ∈ K ∩N, sup(N ∩ η) ∈ Sη.

Foreman-Magidor ([5]) show that every sequence ~S = (Sη | η ∈ K)
of stationary sets which concentrate on ordinals of countable cofinality is
mutually stationary. For a fixed sequence ~S of stationary sets, let T~S be the
collection of all countable N such that for all ηi ∈ N , sup(N ∩ ηi) ∈ Si.

Theorem 1.4 (Foreman-Magidor). Let (ηi | i < j) be an increasing sequence
of regular cardinals. Let ~S = (Si | i < j) be a sequence of stationary sets
such that Si ⊆ ηi ∩ Cof(ω). If θ is a regular cardinal greater than all ηi and
A is an algebra on θ, then there is an N ≺ A which belongs to the class T~S.
Hence ~S is mutually stationary.
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From now on, we assume all stationary subsets of ordinals discussed in
this section are concentrated on countable cofinality. The corresponding
notion for being club in this context is that of an unbounded set which is
closed under ω-sequences.

Definition 1.5. Suppose ~S = {Sη | η ∈ K} is mutually stationary and that
for every η ∈ K, Sη is stationary, co-stationary in η ∩ Cof (ω). We say
a forcing poset P is ~S-preserving if the following holds: Suppose θ > 2|P

+|

is regular. Suppose M is a countable elementary submodel of H(θ) with
{P, ~S} ⊂ M and M ∈ T~S. Suppose p ∈ P ∩M . Then there exists a (M,P)-
generic condition q extending p.

We add some remarks concerning the notions:

1. Any proper forcing is ~S-preserving.

2. When K = {ω1} and ~S = S ⊂ ω1, the definition of ~S-preserving is
identical to the usual definition of S-proper forcing.

3. Let ~S be such that each Sη ∈ ~S is stationary, co-stationary in η ∩
Cof(ω). Then an example of a non-proper, ~S preserving forcing is
the forcing poset Club(Sη) for a fixed η, i.e, the forcing which adds
an unbounded subset to Sη which is closed under ω-sequences, via
countable approximations.

The preservation theorems for countable support iterations of proper
forcings can be generalized to ~S-preserving forcings.

Lemma 1.6. If 〈Pi, Q̇i | i < α〉 is a countable support iteration of forcing
notions and for each i < α, 
Pi“Q̇i is ~S-preserving” then Pα is ~S-preserving.

Proof. (Sketch, following the proof of [13], Theorem 31.15, in particular
Lemma 31.17) We will only need to show by induction on j ≤ α that for any
N ∈ T~S , if j, 〈Pi, Q̇i | i < α〉 ∈ N , then:

(∗)N For every q0 ∈ N ∩ Pj that is (N,Pj)-generic and every ṗ ∈ V Pj such
that

q0 
j ṗ ∈ (Pα ∩N) ∧ ṗ � j ∈ Ġj

there is an (N,Pα) generic condition q ∈ Pα extending q0, that is
q � j = q0 and q 
α ṗ ∈ Ġα.

The statement (∗)N is identical to Lemma 31.17 in [13]. It can be checked
that the original proof also works here, which gives the iteration theorem
exactly as in the proof of Theorem 31.15.

We will use club shooting forcings relative to definable sequences ~S of
mutually stationary sets to code information. These codings do not interfere
with the proper forcings we will use to work towards BPFA.
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Definition 1.7. Let κ be an inaccessible cardinal. Let ~S = (Si | i < κ) be
mutually stationary. We say a forcing poset P is an ~S-coding if δ ≤ κ and
P = 〈Pα, Q̇α | α < δ〉 satisfies the following:

• P is a countable support iteration.

• For any α < δ, one of the followings holds:

1. Assume that α is inaccessible and Pα is forcing equivalent to a
forcing of size less than or equal to α.1 Assume that in V Pα,
(Bβ ⊂ α | β < 2α) is an enumeration of an arbitrary set X ⊂
P (α). Then Q̇α is allowed to be the countably supported product∏
β<2α Ṙβ, where each Ṙβ is itself defined to be∏

j∈Bβ

Club(Sα·(β+1)+2j)×
∏
j /∈Bβ

Club(Sα·(β+1)+2j+1)

using countable support.

2. In all other cases, we have that 
Pα Q̇α is proper.

Let η be an regular cardinal, we say P is an η-~S coding if (1) is replaced by

(1’) α ≥ η is inaccessible and Pα is forcing equivalent to a forcing of size
less than or equal to α. In V Pα , 〈Bβ | β < 2α〉 is an enumeration
of P (α). Then Q̇α is allowed to be the countably supported product∏
β<2α Ṙβ where each Ṙβ is itself∏

j∈Bβ

Club(Sα·(β+1)+2j)×
∏
j /∈Bβ

Club(Sα·(β+1)+2j+1).

By Lemma 1.6, once we can show that every factor of an ~S-coding is
~S-preserving, we can deduce that if P is a ~S-coding forcing, then P is ~S-
preserving. This assertion follows from the proof of the next lemma which
says that we will not accidentally code unwanted information whenever we
use a ~S-coding forcing.

Lemma 1.8. Suppose that ~S is stationary, co-stationary. Suppose P is an
~S-coding forcing. Then for any i ∈ κ, the followings are equivalent:

(a) 
P Si contains an ω-club.

(b) there are β, α, j and sets Bβ ∈ X ⊂ Vα such that j ∈ Bβ if β · (α +
1) + 2j = i and i is even and j /∈ Bβ if β · (α + 1) + 2j + 1 = i and i
is odd.

1We say two forcing P and Q are equivalent if their Boolean completions B(P ) and
B(Q) are isomorphic.
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Proof. ((b) → (a)) Follow from the definition of the forcing.
((a)→ (b)) Fix an i and assume without loss of generality that i is even.

Write i = β · (α+ 1) + 2j and suppose for a contradiction that j is not an
element of Bβ . By the definition of ~S coding forcing, we must have added
a club through Sβ(α+1)+2j+1 instead. Let ~T be the sequence 〈Tk | k < κ〉,
where Tk = Sk if k 6= i and Ti = ηi \ Si. It follows from Theorem 1.4 again
that ~T is mutually stationary. We will prove that P is ~T -preserving to derive
a contradiction. Indeed, we shall see that ~T -preservation implies that ηi \Si
must remain stationary after forcing with P, yet P 
 “Si contains an ω-club”
which is impossible.

To see that ~T preserving forcings preserve the stationarity of every Sηi ∈
~T , we only need to note that for any name Ċ of a subset of ηi which is un-
bounded and ω-closed, and any countable elementary substructure N which
contains Ċ and for which sup(N ∩ ηi) ∈ Sηi , any (N,P)-generic condition q
forces Ċ ∩ (Sηi) 6= ∅.

Next we show by induction that each Q̇β is forced to be ~T -preserving.
Work in V [Gβ]. If Q̇β/Gβ is proper, then it is also ~T -preserving. Other-
wise, (1) holds. Now Q̇β/Gβ is a countable support product of club adding
forcings. Fix any N ∈ T~T which is a countable substructure of H(θ)V [Gβ ].
For any p ∈ N ∩ Q̇β , we can construct a countable decreasing sequence of
conditions 〈pn | n < ω〉 meeting all dense set in N . Define q coordinatewise
by setting q(j) to be the closure of

⋃
n<ω pn(j) if i ∈ N and trivial otherwise.

Note that any non-trivial q(j) is equal to
⋃
n<ω pn(j)∪{sup(N ∩ηj)}, where

ηj = sup(Sj) is a regular cardinal. As N ∈ T~T we have sup(N ∩ ηj) ∈ Sj ,
whenever q(j) is non-trivial. Hence q < p is a condition witnessing that each
factor of the iteration is ~T -preserving, so the iteration P is ~T -preserving as
well. But now Si must remain stationary after we forced with P, which is a
contradiction to (a).

The proof also shows that ~S-coding preserves stationary subset of ω1 if
sup(S0) > ω1. As a Corollary of Lemma 1.8 and the definition of ~S-coding,
in any generic extension by ~S-coding and any even i, at most one of Si and
Si+1 contains a club.

The next lemma follows immediately from the definitions so we skip its
proof.

Lemma 1.9. Suppose P = 〈Pα, Q̇α | α < δ〉 is a countable support itera-
tion. Suppose for any α > 0, Q̇α is forced to be ηα-~S coding of length l(α),
where ηα = max{|Pα|+,Σβ<αl(β)}. Also let η0 be regular. Then P is forcing
equivalent to an η0-~S coding.

6



1.2 Specializing threads through �-sequences

We will briefly present a celebrated theorem, due to S. Todorcevic, which
we use to find Σ1-definitions of regular L- cardinals. The argument is again
entirely due to Todorcevic (see [19]).

Theorem 1.10 (Todorcevic, see [18]). Let κ > ω1 be a regular cardinal and
let Γ ⊂ κ be a set of limit ordinals such that {δ < κ | cf (δ) = ω1} ⊂ Γ. Let
(Cα | α ∈ Γ} be a sequence of subsets of κ such that

1. ∀α ∈ Γ Cα ⊂ α and Cα is a club,

2. if β is a limit point of Cα, then β ∈ Γ and Cβ = Cα ∩ β.

3. There is no club C ⊂ κ such that if α is a limit point of of C, then
α ∈ Γ and Cα = C ∩ α.

Then there is a proper forcing Tκ such that Tκ forces that in the generic
extension, there is a closed subset D of κ of ordertype ω1 and a function f :
D → ω such that for all α, β, if α, β ∈ D and α ∈ limCβ, then f(α) 6= f(β).

sketch of a proof. For α, β ∈ Γ we let β <T α if and only if β is a limit point
of Cα. This induces a tree ordering on Γ.

Next we turn to some very useful definitions. For a regular, sufficiently
large cardinal λ, an elementary chain (Mα ≺ H(λ) | α < ω1) is a sequence
of elementary submodels of H(λ) which additionally satisfies thatMα ⊂Mβ

and Mα ∈Mβ whenever α < β; and Mα =
⋃
β<αMβ if α is a limit ordinal.

We now define the desired forcing Tκ, which is a prototype for the ex-
tremely useful class of forcing with side conditions, as follows: A condition
p ∈ Tκ is a pair ((Nα | α ∈ E), f) where

1. E is a finite subset of ω1 and there is an elementary chain (Mα | α < ω1)
of countable, elementary substructures of H(κ+) such that Nα = Mα

for each α ∈ E.

2. f is a specializing function, i.e. if δNα := sup(Nα ∩ κ then f is a
function from {δNα | α ∈ E} into ω such that f(γ) 6= f(δ) whenever
γ <T δ.

The key assertion is now that Tκ is proper provided we assume that there
is no κ-chain in the tree T on Γ.

Assuming that Tκ is proper, it is standard argument to verify that P
indeed adds an ω1-closed set D and a specializing f : D → ω.

From now on we assume that 0# does not exist. Let (Cα | α ∈ Sing} be
Jensen’s global �-sequence in L; here Sing denotes the set of limit ordinals
α for which cf(α)L < α. Recall that
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1. ∀α ∈ Sing(Cα ⊂ α) and Cα is club.

2. ∀α ∈ Sing(o.t.(Cα) < α).

3. ∀β ∈ Lim(Cα)(β ∈ Sing ∧ Cβ = Cα ∩ β).

We define a tree T on Sing via setting α <T β iff α is a limit point of Cβ .
Note that for a cardinal λ, the tree for the corresponding �λ-sequence does
not have a λ+-branch, thus �λ satisfies the three properties from Todorce-
vic’s theorem. As a consequence, the proper poset Tλ+ adds a closed set D
in (λ+)L of ordertype ω1 and simultaneously specializes the tree T restricted
on ordinals in D, i.e. the forcing adds a function f : D → ω such that for
α, β ∈ D, if α <T β then f(α) 6= f(β).

Consider now the Σ1-formula ψ(x, y) which says that x is a set of ordinals
which are all singular in L, x is closed and of ordertype ω1; y is a function
from x into ω such that y(α) 6= y(β) whenever α, β ∈ x and α ∈ limCβ .

We claim that if θ = sup(D) and D ⊂ θ′ < ω2, and if f : D → is such
that for α, β ∈ D, if α <T β then f(α) 6= f(β), then θ′ is a regular cardinal
in L.

Indeed assume θ′ were singular in L, then Cθ′ would have been defined,
so D ∩ limCθ′ is uncountable. In particular, there is α < β ∈ D such that
f(α) = f(β), yet α <T β, which is a contradiction. To summarize:

Theorem 1.11. For every L-regular cardinal κ, there is a proper forcing
denoted by Tλ and a Σ1-formula φ such that in the generic extension V [Tκ],

V [Tκ] |= φ(κ)⇔ κ is a regular cardinal in L

1.3 Coding machinery

When applied over L, the ~S-coding forcings can be used to surgically alter
the truth-value of certain projective formulas. These formulas and the ~S-
coding forcings will be used to form projective predicates Φn,m, for n,m ∈ ω,
where each Φn,m is a Σ1

n-formula which will eventually serve as our graph of
our uniformizing functions for An,m, where An,m is the m-th Σ1

n-set in the
plane.

We first describe how to use the ~S-coding forcings to obtain suitable Σ1
n-

predicates, whose truth-value can be manipulated using the right forcings.
We work over L as our ground model. Let r ∈ L be a real. Note that

over L there is a sequence

~S = (Sα | α ∈ Lim)

uniformly definable satisfying

• Sα ⊂ α
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• If α is a regular cardinal, then Sα is stationary co-stationary in α ∩
Cof(ω).

The existence of such a sequence (Sα | α ∈ Lim(δ)) follows from the fact
that ♦λ holds in L for any L-cardinal λ and is a routine construction.

We aim to find first a Σ1
3-formula Φ such that L |= ¬∃xΦ(x), yet for η ∈

Ord there is a coding forcing Code(r, η) ∈ L such that after forcing with
Code(r, η), in the resulting universe L[Code(r, η)] |= Φ(r) and ∀s(s 6= r →
¬Φ(s)) does hold.

The desired forcing Code(r, η) will be itself a three step iteration denoted
by Q0(r, η)∗Q̇1(r, η)∗Q̇2(r, η), where the first and second factor are iterations
themselves, and we will describe it now. Given our real r and η ∈ L such
that η is a limit cardinal in L, we first look at the ω-block of L-cardinals
which follow η, that is we form the interval [η, (η+ω)L).

The first factor of the iteration, denoted by Q0(r, η), will use a fully
supported ω-length iteration, with Tη+i for i ∈ ω as factors. Consequentially,
after forcing with this partial order, each L-cardinal in the interval [η, η+ω)
is Σ1-definable using ω1 as the only parameter in its definition.

For the second factor of our coding forcing we first identify the real r
with the according subset of ω and form the second factor of Code(r, η) as
follows:

Q1(r, η) :=
∏
j∈r

Club(Sη+2j)×
∏
j /∈r

Club(Sη+2j+1)

using countable support.
After the two forcings are done we define (in the resulting generic exten-

sion) X ⊂ ω1 to be the <-least set (in some previously fixed well-order of
some sufficiently large H(θ)) which codes the following objects:

• The <-least set of closed sets of η+i of ordertype ω1 and the according
specializing functions, both added with the factors of the forcing of
the form Tη+i . These sets together ensure the Σ1-definability of the
L-cardinals in the interval [η, η+ω).

• And ω-many ω-closed, unbounded subsets through some of the canon-
ically definable stationary sets Sη+i ⊂ η+i ∩ cof(ω). These ω-closed
sets are so chosen that the characteristic function of r can be read off.
That is we collect {cη+i ⊂ Sη+i : i = 2n ∧ n /∈ r} and {cη+i ⊂ Sη+i :
i = 2n+ 1 ∧ n ∈ r}.

As mentioned already, when working in L[X] then we can read off r
via looking at the ω-block of L-cardinals starting at η and determine which
canonical L-stationary set Sη+i contains an ω-closed, unbounded set in L[X]:

(∗) n ∈ r if and only if Sη+(2n+1) contains an ω-closed unbounded set, and
n /∈ r if and only if Sη+(2n) contains an ω-closed unbounded set.
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Indeed this follows readily from Lemma 1.8.
We note that we can apply an argument resembling David’s trick in this

situation. We rewrite the information of X ⊂ ω1 as a subset Y ⊂ ω1 using
the following line of reasoning. It is clear that any transitive, ℵ1-sized model
M of ZF− which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model (M,∈) which contains
X as a set XM ⊂ ω1, then for any uncountable β such that Lβ[XM ] |= ZF−

and XM ∈ Lβ[XM ]:

Lβ[XM ] |= “The model decoded out of XM satisfies (∗)”.

In particular there will be an ℵ1-sized ordinal β as above and we can fix
a club C ⊂ ω1 and a sequence (Mα : α ∈ C) of countable elementary
submodels of Lβ[XM ] such that

∀α ∈ C(Mα ≺ Lβ[XM ] ∧Mα ∩ ω1 = α)

Now let the set Y ⊂ ω1 code the pair (C,XM ) such that the odd entries of
Y should code XM and if Y0 := E(Y ) where the latter is the set of even
entries of Y and {cα : α < ω1} is the enumeration of C then

1. E(Y ) ∩ ω codes a well-ordering of type c0.

2. E(Y ) ∩ [ω, c0) = ∅.

3. For all β, E(Y ) ∩ [cβ, cβ + ω) codes a well-ordering of type cβ+1.

4. For all β, E(Y ) ∩ [cβ + ω, cβ+1) = ∅.

We obtain

(∗∗) For any countable transitive model M of ZF− such that ωM1 = (ωL1 )M

and Y ∩ωM1 ∈M ,M can construct its version of the universe L[Y ∩ωN1 ],
and the latter will see that there is an ℵM1 -sized transitive model N ∈
L[Y ∩ ωN1 ] which models (∗) for r and η.

Thus we have a local version of the property (∗).
We know define the third, and last factor of Code(r, η), working in

L[Q0(r, η)][Q̇1(r, η)] we shall define Q2(r, η) as follows. We use almost dis-
joint forcing AD(Y ) relative to our previously defined, almost disjoint family
of reals D ∈ L (see the paragraph after Definition 2.5) to code the set Y ⊂ ω1

into one real r. This forcing only depends on the subset of ω1 we code, thus
AD(Y ) will be independent of the surrounding universe in which we define
it, as long as it has the right ω1 and contains the set Y .

We finally obtained a real R such that

(∗∗∗) For any countable, transitive model M of ZF− such that ωM1 = (ωL1 )M

and R ∈M , M can construct its version of L[R] which in turn thinks
that there is a transitive ZF−-model N of size ℵM1 such that N believes
(∗) for r and η.
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Note that (∗∗∗) is a Π1
2-formula in the parameters R and r. We will often

suppress the setsr, η when referring to (∗∗∗) as they will be clear from the
context. We say in the above situation that the real r is written into ~S, or
that r is coded into ~S (at η) and R witnesses that r is coded (at η).

The projective and local statement (∗∗∗), if true, will determine how
certain inner models of the surrounding universe will look like with respect
to branches through ~S. That is to say, if we assume that (∗∗∗) holds for a
real r and is the truth of it is witnessed by a real R. Then R also witnesses
the truth of (∗∗∗) for any transitive ZF−-model M which contains R (i.e.
we can drop the assumption on the countability of M). Indeed if we assume
that there would be an uncountable, transitive M , R ∈M , which witnesses
that (∗∗∗) is false. Then by Löwenheim-Skolem, there would be a countable
N ≺ M , R ∈ N which we can transitively collapse to obtain the transitive
N̄ . But N̄ would witness that (∗∗∗) is not true for every countable, transitive
model, which is a contradiction.

Consequentially, the real R carries enough information that the universe
L[R] will see that certain L-stationary sets from ~S have clubs in that

n ∈ r ⇒ L[R] |= “Sη+(2n+1) contains an ω-closed unbounded set”.

and

n /∈ r ⇒ L[R] |= “Sη+(2n) contains an ω-closed unbounded set”.

Indeed, the universe L[R] will see that there is a transitive ZF−-model N
which believes (∗). The latter being coded into R. But by upwards Σ1-
absoluteness, and the fact that N can compute ~S correctly, if N thinks that
some L-stationary set in ~S contains an ω-closed, unbounded set, then L[R]
must think so as well.

2 Suitable Σ1
n-predicates

We shall use the Σ1
3-predicate “being coded into ~S” (we will often write just

“being coded” for the latter) to form suitable Σ1
n-predicates Φn for every

n ∈ ω. These predicates share the following properties:

1. L |= ∀x¬(Φn(x))

2. For every real x ∈ L, there is a coding forcing Coden(x) ∈ L such that
after forcing with it, L[Coden(x)] |= Φn(x), and for every real y 6= x,
L[Coden(x)] |= ¬Φn(y).

Most importantly, these properties remain true even when iterating the cod-
ing forcings Coden(xi) for a sequence of (names of) reals.

The predicates Φn(x) will be defined now.

11



• Φ3(x, y,m) ≡ ∃a0((x, y,m, a0) is coded into ~S).

• Φ4(x, y,m) ≡ ∃a0∀a1((x, y,m, a0, a1) is not coded into ~S).

• Φ5(x, y,m) ≡ ∃a0∀a1∃a2((x, y,m, a0, a1, a2) is coded into ~S).

• Φ6(x, y,m) ≡ ∃a0∀a1∃a2a3((x, y,m, a0, a1, a2, a3) is not coded into ~S).

• ...

• ...

• Φ2n(x, y,m) ≡ ∃a0∀a1...∀a2n((x, y,m, a0, ..., a2n) is not coded into ~S).

• Φ2n+1(x, y,m) ≡ ∃a0∀a1...∃a2n+1((x, y,m, a0, ..., a2n+1) is coded into
~S).

• ...

• ...

Each predicate Φn is exactly Σ1
n. In the choice of our Σ1

n-formulas Φn(x),
we encounter again a periodicity phenomenon, that is two different cases
depending on n ∈ ω being even or odd, a theme which is pervasive in this
area. It is clear that for each predicate Φn and each given real x there is
a way to create a universe in which Φn(x) becomes true using our coding
forcings. We just need to iterate the relevant coding forcings using countable
support.

Lemma 2.1. Let n ∈ ω and let x be a real in our ground model L. Then
there is a forcing Coden(x) such that if G ⊂ Coden(x) is generic, the generic
extension L[G] will satisfy Φn(x) and for every y 6= x, L[G] |= ¬Φn(y). This
property can be iterated, that is it remains true if we replace L with L[G] in
the above.

3 Based forcing

This section introduces a suitable collection of forcings, dubbed based forc-
ings, which we use for the proof. As we proceed in our iteration, we simulta-
neously refine based forcings, via adding more and more constraints, yielding
a decreasing hierarchy of α-based forcings.

As a first step, we shall consider the problem of forcing the Σ1
3-uniformization

property over universes which satisfy the anti-large cardinal hypothesis that
ω1 = ωL1 (or more generally satisfy that ω1 is not inaccessible to reals).
Recall our Σ1

3-predicate Φ3(x) defined in the last two sections, and the at-
tached coding forcing Code(x). There is a very easy strategy to force the
Σ1

3-uniformization property for universes V which satisfy ω1 = ωL1 provided

12



V thinks that Φ3(x) does not hold for every real x ∈ V : we pick some book-
keeping function F ∈ V which should list all the (names of) reals in our
iteration and at each stage β, under the assumption that we created already
V [Gβ], if F (β) lists a real x ∈ V [Gβ] and a natural number k, we ask whether
there is a real y such that

V [Gβ] |= ϕk(x, y)

holds, where ϕk is the k-th Σ1
3-formula. If so, we pick the least such y

(in some fixed well-order), and let the value of the desired Σ1
3-uniformizing

fk(x) to be y. Additionally we force with Code(x, y, k) over V [Gβ] and
obtain V [Gβ+1]. The resulting universe V [Gβ+1] will satisfy that Φ3(x, y, k)
is true, whereas Φ3(x, y′, k) is not true for each y′ 6= y. Moreover, because
of upwards absoluteness of Σ1

3-formulas, this property will remain true in all
further generic extensions we create.

If we iterate long enough in order to catch our tail, the final model V [G]
will satisfy the Σ1

3-uniformization property via

fk(x) = y ⇔ Φ3(x, y, k).

To summarize, the easy strategy to force Σ1
3-uniformization is to consider at

each step some x-section of some Σ1
3-set Ak ⊂ ωω × ωω, and if non-empty,

pick the least y for which Ak(x, y) is true. Then force to make Φ3(x, y, k)
true and repeat.

Based forcings use this strategy for Σ1
3-sets, while putting no constraints

on Σ1
n-sets for n > 3. Anticipating that we aim for a universe of BPFA, we

let κ be the least reflecting cardinal in L.

Definition 3.1. Let λ < κ and let F : λ→ H(κ) be a bookkeeping function.
We say that an iteration (Pβ, Q̇β | β < λ) is (0-)based with respect to F
if the iteration is defined inductively via the following rules: Assume that
F (β) = (ẋ, 3, k̇) where ẋ is a Pβ-name of a real and k̇ a Pβ-name of a
natural number. Also assume that V [Gβ] |= ∃y(ϕ3,k(x, y)) and let ẏ be the
<-least name of such a real in some fixed well-order of H(κ). Then let Q̇Gβ

κ be
Code(x, y, 3, k). If V [Gβ] |= ∃y(φ3,k(x, y)) is not true use the trivial forcing.

Otherwise, we let the bookkeeping decide whether it provides us with a
some reals y, a0, a1, ..., an and whether a tuple of the form (x, y, a0, ..., an,m, k)
is coded or not.

3.1 Strategy to obtain global Σ-uniformization

We shall describe the underlying idea to force the global Σ-uniformization.
The definition of the factors of the iteration will depend on whether the for-
mula ϕm we consider at our current stage is in Σ1

2n or in Σ1
2n+1 where n ≥ 2.

We start with the case where ϕm appears first on an odd level of the projec-
tive hierarchy. Assume that ϕm ≡ ∃a0∀a1∃a2...∃a2n−2ψ(x, y, a0, a1, ...a2n) is

13



a Σ1
2n+1-formula (where ψ(x, y, a0, ...a2n) is a Π1

2-formula quantifying over
the two remaining variables a2n−1 and a2n) and x is a real. We want to find
a value for the uniformization function for ϕm at the x-section.

To start, we list all triples of reals ((x, y0, a0
0), (x, y1, a1

0), (x, y2, a2
0), ...) ac-

cording to some fixed well-order <. There will be a <-least triple (x, yα, aα0 )
for which ∀a1∃a2...∃a2n−2ψ(x, yα, aα0 , a1, a2...) is true, otherwise the x-section
would be empty and there is nothing to uniformize.

The goal will be to set up the iteration in such a way that all triples
(x, yβ, aβ0 ), β > α will satisfy the following formula, which is Π1

2n+1 in the
parameters (x, yβ, aβ0 ,m) as is readily checked:

∀a1∃a2∀a3...∃a2n−2((x, yβ,m, aβ0 , a1, a2..., a2n−2) is not coded into ~S).

At the same time the definition of the iteration will ensure that (x, yα, aα0 )
will satisfy

∃a1∀a2∃a3...∀a2n−2((x, yα,m, aα0 , a1, a2..., a2n−2) is coded into ~S).

Provided we succeed, the pair (x, yα) will then be the unique solution to the
following formula, which is Σ1

2n+1, and which shall be the defining formula
for our uniformizing function:

σodd(x, y,m) ≡ ∃a0(∀a1∃a2...ψ(x, y, a0, a1, ...)∧
¬(∀a1∃a2...((x, y,m, a0, a1, a2...) is not coded into ~S))

Indeed, for all β > α, (x, yβ, aβ0 ) can not satisfy the second subformula of
Ψ whereas for all β < α, (x, yβ, aβ0 can not satisfy the first subformula, as
(x, yα, aα0 ) is the least such triple.

If we assume that ϕm is on an even level of the projective hierarchy
we will define things in a dual way to the odd case. Assume that ϕm ≡
∃a0∀a1∃a2...∀a2n−3ψ(x, y, a0, a1, ...a2n−1) is a Σ1

2n-formula and x is a real.
We want to find a value for the uniformization function for ϕm at the x-
section.

Again, we list all triples of reals ((x, y0, a0
0), (x, y1, a1

0), (x, y2, a2
0), ...) ac-

cording to some fixed well-order <. There will be a <-least triple (x, yα, aα0 )
for which ∀a1∃a2...∀a2n−3ψ(x, yα, aα0 , a1, a2...) is true, otherwise the x-section
would be empty and there is nothing to uniformize.

The goal will be to set up the iteration in such a way that all triples
(x, yβ, aβ0 ), β > α will satisfy the following formula, which is Π1

2n in the
parameters (x, yβ, aβ0 ,m) as is readily checked:

∀a1∃a2∀a3...∃a2n−3((x, yβ,m, aβ0 , a1, a2..., a2n−3) is coded into ~S).

At the same time the definition of the iteration will ensure that (x, yα, aα0 )
will satisfy

∃a1∀a2∃a3...∃a2n−3((x, yα,m, aα0 , a1, a2..., a2n−3) is not coded into ~S).
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Provided we succeed, the pair (x, yα) will then be the unique solution to the
following formula, which is Σ1

2n, and which shall be the defining formula for
our uniformizing function:

σeven(x, y,m) ≡ ∃a0(∀a1∃a2...ψ(x, y, a0, a1, ...)∧
¬(∀a1∃a2...((x, y,m, a0, a1, a2...) is coded into ~S))

3.2 Definition of the iteration according to the strategy.

We shall elaborate on the ideas presented in the last section. Our goal is to
define an iteration such that our formulas σeven and σodd work as defining
formulas for the uniformization functions. Later we will combine these ideas
with the standard iteration to obtain BPFA from a reflecting cardinal to
finally finish the proof of the main theorem.

We will need the following predicates. For an arbitrary real x, list the
triples (x, y0, a0

0), (x, y1, a1
0), (x, y2, a2

0), ...) according to our fixed well-order
<. For each ordinal α < 2ℵ0 we fix bijections πα : (2ℵ0)α → 2ℵ0 (we assume
w.l.o.g that such a bijection exist as we always force its existence with a
proper forcing).

We say
Ψ(#ψ, x, yα, aα0 , b1, ..., bn) is true

if for every β < α, if we let π−1
α (bk) = (ckβ)β<α then ψ(x, yβ, aβ0 , c

1
β, c

2
β, ..., c

n
β)

is true, where ψ is a Π1
2-formula. Note that strictly speaking, Ψ is not first

order as it is a conjunction of α-many formulas. We will use coding to create
a projective predicate which is true whenever Ψ is true.

Let F : κ → H(λ) be some bookkeeping function in L which shall be
our ground model and which guides our iteration. We assume that we have
defined already the following list of notions:

• We do have the notion of αβ-based forcings, which is a subset of the
set of based forcings. There is a set of tuples of reals which is tied to
the αβ-based forcings and which consists of tuples of reals we must not
use in coding forcings anymore as factors of an αβ-based forcing.

• We defined already our iteration Pβ ∈ L up to stage β.

• We picked a Pβ-generic filter Gβ for Pβ and work, as usual, over L[Gβ].

The bookkeeping function F at β hands us an ω-tuple (ẋ, ṁ, l̇, ḃ0, ḃ1, ḃ2, ...)
where ẋ and ḃn are Pβ-names of a reals and ṁ and l̇ are both Pβ-names of
natural numbers (in fact at each stage we will only need finitely many of
those names of reals, and the rest of the information will be discarded). We
let x = ẋGβ , and define bn,m, l accordingly. Our goal is to define the forcing
Q̇β we want to use at stage β, and to define the notion of αβ + 1-allowable
forcing. We consider various cases for our definition.
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3.2.1 Case 1

In the first case, writing ϕm = ∃a0∀a1...∃a2n−2ψ(x, y, a0, ..., a2n−2), where
ψ is a Π1

2-formula (and ϕm is a Σ1
2n−1 formula for n ≥ 3) we assume that

the bookkeeping F at β hands us a tuple c1, ...c2n−2 of real numbers, x, and
α < 2ℵ0 with the assigned reals aα0 and yα.

Recall that we have our fixed bijection πα : (2ℵ0)α → 2ℵ0 (note that such
a bijection exists at least in a proper generic extension, so we pass to that
universe if necessary) We assume that

ψ(x, y, a0, c1, ..., c2n−2) is true.

We first define αβ +1-based forcings as just αβ-based with the additional
constraints that we must not use any forcings of the form

Code(#ψ, x, yi, ai0, e1, e2, ..., e2n−2)

as a factor of our iteration, where i > α and e1, e2, ..., e2n−2 are such that
there are reals rj0, r

j
1, ..., r

j
i with rjα = cj and πi(r

j
0, ..., r

j
i ) = ej for every

j ∈ [1, 2n− 2].
We use the coding forcing

Code(#ψ, x, yα, aα0 , g1, g2, ..., g2n−2) =: Q̇β

as the β-th factor of our iteration, where g1, ..., g2n−2 are reals which we
are given by the bookkeeping and such that Ψ(#ψ, x, yα, aα0 , g1, ..., g2n−2) is
true.

If Ψ(#ψ, x, yα, aα0 , g1, ..., g2n−2) is not true, then pick the <-least tuple
g1, ..., g2n−2 ) such that Ψ(#ψ, x, yα, aα0 , g1, ..., g2n−2) is true. If there is no
such tuple then do nothing.

The upshot of this definition is the following. Suppose we iterate follow-
ing our rules, and in the final model L[Gκ], ∃a0∀a1...∃a2n−2ψ(x, y, a0, a1, ..., a2n−2)
is true and (x, y, a0) is the <-least triple witnessing this. Then also

∃a0∀a1...∃a2n−2((#ψ, x, y, a0, a1, ..., a2n−2) is coded)

is true in L[Gκ] by the rules of the iteration. At the same time for every
(x, y′′, a′′0) > (x, y, a0) and for every real c1 there will be a real b′2 such that
for every c3 there is a further b′4 and so on such that (x, y′′, a′′0,#ψ, c1, b

′
2, ...)

is not coded.

3.2.2 Case 2

We again let ϕm = ∃a0∀a1...∃a2n−2ψ(x, y, a0, ..., a2n−2) and we assume that
the bookkeeping F at β hands us a tuple c1, ...c2n−2 of real numbers, x, and
α < 2ℵ0 with the assigned reals aα0 and yα.
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We assume that

ψ(x, y, a0, c1, ..., c2n−2) is not true.

In this situation we force with the trivial forcing at the β-th stage and do
not define the notion of αβ + 1-based forcing. Instead we continue working
with αβ-based forcings.

3.2.3 Case 3

This is the dual case to the first one. We assume that

ϕm ≡ ∃a0∀a1, ...,∀a2n(ψ(x, y, a0, ..., a2n−3))

that is ϕm belongs to an even projective level. We assume that the book-
keeping F at β hands us a tuple c1, ...c2n−3 of real numbers, x, and α < 2ℵ0

with the assigned reals aα0 and yα.
We assume that

ψ(x, yα, aα0 , c1, ..., c2n−3) is true.

First we define the β-the factor of our iteration. We force with

Code(#ψ, x, yi, ai0, e1, e2, ..., e2n−3) =: Q̇β

where i > α and e1, e2, ..., e2n−3 are reals given by the bookkeeping which
have the property that there are reals rj0, r

j
1, ..., r

j
i with r

j
α = cj and πi(r

j
0, ..., r

j
i ) =

ej for every j ∈ [1, 2n− 3].
Next we define the notion of αβ + 1-based which should be αβ-based and

the additional constraint that

Code(#ψ, x, y, α, g1, g2, ..., g2n−3) =: Q̇β

must not be used as a factor of any future forcing we use in our iteration.
Here g1, ..., g2n−3 are reals which we are given by the bookkeeping with the
property that Ψ(#ψ, x, yα, aα0 , g1, ..., g2n−3) (see at the beginning of section
2.2 for a definition of Ψ) holds true.

3.2.4 Case 4

This is the same as in case 2. We find ourselves in the situation where
ψ(x, yα, aα0 , c1, ..., c2n−3) is not true. Then we do nothing.

This ends the definition of our iteration. We shall argue later, that the
definition works in that it will produce a universe where σeven and σodd serve
as definitions of uniformizing functions, when applied in the right context.

Definition 3.2. Let F : κ → H(λ) be a bookkeeping function. We say that
an iteration (Pβ, Q̇β | β < κ) is suitable if each factor of the iteration either
is proper or each factor is obtained using F and the four rules described
above.
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4 Proving the main theorem

Recall first that κ is reflecting whenever it is regular and such that Vκ is
Σ2-elementary in the universe V . We let κ be the least reflecting cardinal
in L. We let F : κ → H(κ) be such that every element of H(κ) has an
unbounded pre-image under F . We assume that we arrived at stage β < κ
of our iteration and will describe what to force with now.

4.1 Definition of the iteration. Odd stages

Assume that F (β) hands us names such that they evaluate with the help of
our current generic Gβ to a tuple (#ψ, x, yα, aα0 , c1, ..., cn, ..., ) where #ψ is
the the Gödelnumber of a Σ1

n-formula and x, yα, aα0 , c1, ...) are reals.
In this situation we just follow the one of the four cases in the definition

of suitable forcings which applies.

4.2 Definition of the iteration. Even stages.

We work towards BPFA on the even stages of the iteration. Recall that due
to J. Bagaria (see [2]) BPFA is equivalent to the assertion thatH(ω2) ≺Σ1 V

P

for any proper forcing P. We shall work towards Bagaria’s reformulation of
BPFA adapting the usual way.

Assume that the bookkeeping F at stage β hands us a Σ1-formula σ and
parameters p0, ..., pl of σ which are elements of P (ω1) ∩ L[Gβ]. We ask of
σ(p0, ..., pl) whether it holds in a suitable generic extension of L[Gβ]. If yes,
then as κ is reflecting, there is such a forcing already in Lκ[Gβ]. Moreover
the witness to the true Σ1-formula can be assumed to have a name in Lκ[Gβ].
We fix a γ < κ such that Lγ is Σ2-elementary in Lκ, which implies that also
Lγ [Gβ] is Σ2-elementary in Lκ[Gβ]. Hence the suitable forcingQ which forces
σ(p0, ..., pl) to become true can be assumed to belong to Lγ [Gβ] already. We
force with Q at stage β then.

4.3 Properties of the defined universe

Lemma 4.1. Let Gκ denote a generic filter for the full, κ-length iteration.

1. Then L[Gκ] satisfies that whenever ϕm = ∃a0∀a1...∃a2n−2ψ(x, y, a0, ..., a2n−2)
and (x, yα, aα0 ) is such that

L[Gκ] |= ϕm(x, yα, aα0 )

Then for each β > α

L[Gκ] |= ∀a1∃a2...∃a2n−2((#ψ, x, yβ, aβ0 , a1, .., a2n−2) is not coded )
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2. If ϕm = ∃a0∀a1...∃a2n−3ψ(x, y, a0, ..., a2n−3) and (x, yα, aα0 ) is such
that

L[Gκ] |= ϕm(x, yα, aα0 )

Then for each β > α

L[Gκ] |= ∀a1∃a2...∃a2n−3((#ψ, x, yβ, aβ0 , a1, .., a2n−3) is coded )

Proof. We will only proof the first item, as the second is shown in the dual
way. Let a1 be an arbitrary real. As L[Gκ] |= ϕm(x, yα, aα0 ), we know that
there is an a2 such that for every a3 and so on there is an a2n−2 such that
L[Gκ] |= ψ(x, yα, aα0 , a1, ..., a2n−2). By case 1 in the definition of the itera-
tion, this translates to L[Gκ] |= “(#ψ, x, yβ, aβ0 , a1, ..., a2n−2) is not coded”.
As a1 was arbitrary we can conclude that

L[Gκ] |= ∀a1∃a2...∃a2n−2((#ψ, x, yβ, aβ0 , a1, .., a2n−2) is not coded )

as desired.

Lemma 4.2. Again Gκ denotes a generic filter for the entire, κ-length iter-
ation.

1. If α is least such that

L[Gκ] |= ∀a1...∃a2n−2ψ(x, yα, aα0 , ..., a2n−2),

then

L[Gκ] |= ∃a1∀a2...∀a2n−2((#ψ, x, yα, aα0 , a1, a2, ..., a2n−2) is coded.)

2. If α is least such that

L[Gκ] |= ∀a1...∃a2n−3ψ(x, yα, aα0 , ..., a2n−3),

then

L[Gκ] |= ∃a1∀a2...∀a2n−3((#ψ, x, yα, aα0 , a1, a2, ..., a2n−3) is not coded.)

Proof. As α is the first ordinal for which

L[Gκ] |= ∀a1...∃a2n−2ψ(x, yα, aα0 , ..., a2n−2),

we know that ∀β < α, L[Gκ] |= ∃a1∀a2, ...,∀a2n−2(¬ψ(x, yβ, aβ0 , a1, ...)). In
particular, for every β < α there are reals aβ1 such that for every aβ2 there are
reals aβ3 and so on such that ¬ψ holds. Using the bijection πα, we can find
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an a1 = πα((aβ1 )β<α) which has the property that for any real a2 there will
be a real a3 = πα(aβ3 )β<α) such that for any real a4 and so on ¬ψ is true.

But this translates via the case 1 rule of our iteration to the assertion
that

L[Gκ] |= ∃a1∀a2...∀a2n−2((#ψ, x, yα, aα0 , a1, a2, ..., a2n−2) is coded.)

Lemma 4.3. In L[Gκ] the Σ1
n+1-uniformization property holds true for every

n ≥ 1.

Proof. Let ϕ ≡ ∃a0∀a1...(ψ(x, y, a0, a1, ..., a2n−2)) be an arbitrary Σ1
2n+1-

formula in two free variables where ψ is Π1
2. Let x be a real such that there

is a real y with L[Gκ] |= ϕ(x, y). We list all the triples (x, yα, aα0 ) according
to our well-order <. Let α be least such that

L[Gκ] |= ∀a1...(ψ(x, yα, aα0 , a1, ...)).

Then by the last Lemma

L[Gκ] |= ∃a1∀a2...∀a2n−2((#ψ, x, yα, aα0 , ...) is coded)

holds true. Note that this formula is Σ1
2n+1. By the penultimate Lemma,

for each β > α

L[Gκ] |= ∀a1∃a2...∃a2n−2((#ψ, x, yβ, aβ0 , a1, ..) is not coded),

which is Π1
2n+1

So (x, yα) is the unique pair satisfying the Σ1
2n+1-formula

∃a0((∀a1∃a2...∃a2n−2(ψ(x, y, a0, ...)∧
¬(∀a1∃a2...∃a2n−2((#ψ, x, y, a0, a1, ...a2n−2 is not coded))

Indeed

Lemma 4.4. L[Gκ] |= BPFA.

Proof. This is standard. We show that H(ω2)L[Gκ] is Σ1-elementary in any
L[Gκ]P, where P is proper. We assume that the Σ1-formula τ(x, p0, ..., pn)
can be forced to become true with a proper P ∈ L[Gκ]. The choice of F
ensures that τ and its parameters are considered at an even stage β < κ of
our iteration. But Pκ ∗ P is suitable and witnesses that τ can be forced to
become true. Hence we forced so that τ becomes true already at stage β < κ
and by upwards absoluteness of Σ1-statements the proof is done.
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